## 80 PLUS Verification and Testing Report

| TYPICAL EFFICIENCY (50% Load): | 90.99% |
|--------------------------------|--------|
| AVERAGE EFFICIENCY :           | 83.22% |
| AVERAGE STANDBY EFFICIENCY :   | 76.99% |
| 80 PLUS COMPLIANT:             | Gold   |

| ID Number     | 7699                                             |
|---------------|--------------------------------------------------|
| Manufacturer  | Guangzhou Henew Technology Development Co., Ltd. |
| Model Number  | PG1100AAA                                        |
| Sample 1 S/N: | N/A                                              |
| Sample 2 S/N: | N/A                                              |
| Туре          | ATX12V                                           |
| Test Date     | 1/7/25                                           |

| Rated              | Value   | Units |
|--------------------|---------|-------|
| Input Voltage      | 100-240 | Volts |
| Input Current      | 13      | Amps  |
| Input Frequency    | 50-60   | Hz    |
| Rated Output Power | 1000    | Watts |
|                    |         |       |

Note: All measurements were taken with input voltage at 115 V nominal at 60 Hz.

| Produce (MODEL):PETIDOAA<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama<br>Sama | 10 million |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 25% <u>13000 04A 05A 35A</u><br>1300001 3500 35A<br>13000001 35000<br>1300001 35.000<br>14000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |



Input AC Current Waveform (ITHD = 12.02%, 50% Load)

| L        | DE     | 1        | Lood   | Input   | DC Terminal Voltage (V)/ DC Load Current (A) |              |              |              | Output      | Efficiency |           |
|----------|--------|----------|--------|---------|----------------------------------------------|--------------|--------------|--------------|-------------|------------|-----------|
| "RMS (A) | FF     | •THD (%) | LUau   | Watts   | 12V (cumulative of 12V1, 12V2, etc.)         | -12V         | 3.3V         | 5V           | 5VSB        | Watts      | Linciency |
| 0.113    | 0.2759 | 13.80    | 0%     | 3.59    | No-Load                                      |              |              |              |             |            |           |
| 0.271    | 0.8615 | 18.41    | 2%/10W | 26.90   | 12.070/1.467                                 | 12.074/0.005 | 3.348/0.252  | 5.053/0.252  | 5.039/0.052 | 20.14      | 74.88%    |
| 0.609    | 0.9660 | 13.23    | 5%     | 67.67   | 12.150/3.665                                 | 12.076/0.013 | 3.349/0.631  | 5.053/0.630  | 5.036/0.131 | 50.64      | 74.83%    |
| 1.106    | 0.9841 | 11.92    | 10%    | 125.15  | 12.149/7.330                                 | 12.079/0.026 | 3.351/1.261  | 5.053/1.261  | 5.031/0.262 | 101.27     | 80.92%    |
| 1.990    | 0.9886 | 13.04    | 20%    | 226.32  | 12.140/14.656                                | 12.082/0.052 | 3.352/2.522  | 5.052/2.522  | 5.021/0.523 | 202.38     | 89.42%    |
| 4.870    | 0.9886 | 12.02    | 50%    | 553.58  | 12.079/36.636                                | 12.095/0.131 | 3.355/6.306  | 5.050/6.306  | 5.023/1.308 | 503.69     | 90.99%    |
| 9.943    | 0.9938 | 9.30     | 100%   | 1136.39 | 12.023/73.264                                | 12.104/0.262 | 3.361/12.609 | 5.046/12.609 | 4.975/2.616 | 1003.04    | 88.27%    |

Note: Efficiency data was obtained from Sample 1 (Serial Number: N/A)

|          | I DE   | 1        | Lood  | Input | DC Terminal Voltage (V)/ DC Load Current (A) |       | Standby    |
|----------|--------|----------|-------|-------|----------------------------------------------|-------|------------|
| "RMS (A) | FF     | •THD (%) | LUau  | Watts | 5VSB                                         | Watts | Efficiency |
| 0.085    | 0.0032 | 0.96     | 0mA   | 0.03  | Vampire Load                                 |       |            |
| 0.086    | 0.0322 | 9.35     | 45mA  | 0.32  | 5.049/0.045                                  | 0.23  | 71.43%     |
| 0.087    | 0.0599 | 16.71    | 90mA  | 0.60  | 5.048/0.090                                  | 0.45  | 75.46%     |
| 0.111    | 0.2746 | 56.89    | 550mA | 3.50  | 5.037/0.550                                  | 2.77  | 79.11%     |
| 0.146    | 0.3787 | 71.65    | 1A    | 6.37  | 5.027/1.000                                  | 5.03  | 78.95%     |
| 0.187    | 0.4361 | 77.53    | 1.5A  | 9.50  | 5.016/1.500                                  | 7.52  | 79.20%     |
| 0.326    | 0.5001 | 82.63    | 3A    | 19.22 | 4.980/3.003                                  | 14.95 | 77.80%     |

Note: Standby efficiency data was obtained from Sample 2 (Serial Number: N/A)







These tests were conducted by a third party independent testing firm on behalf of the 80 PLUS Program. 80 PLUS is a certification program to promote highly-efficient power supplies (greater than 80% efficiency in the active mode) in technology applications. https://www.clearesult.com/80plus/ [clearesult.com]